MOSFET Datasheet


Enter a full or partial manufacturer part number with a minimum of 3 letters or numbers
 
IRF740
  IRF740
  IRF740
 
IRF740
  IRF740
  IRF740
 
IRF740
  IRF740
 
 
List
10N30 ..2N5911
2N5912 ..2N6963
2N6964 ..2SJ128
2SJ130 ..2SJ553
2SJ553L ..2SK1519
2SK1520 ..2SK2157
2SK2158 ..2SK2751
2SK2753-01 ..2SK3141
2SK3141-01 ..2SK3668
2SK3669 ..2SK523
2SK525 ..3N60K
3N60Z ..5N80
5N90 ..AP10N70W
AP10P10GH-HF ..AP2R803GH-HF
AP2R803GMT-HF ..AP4543GEH-HF
AP4543GEM-HF ..AP92T12GP-HF
AP92U03GH-HF ..AP98T07GP-HF
AP9918GJ ..APT10M11JVR
APT10M11LVR ..AUIRF3007
AUIRF3205 ..AUIRLR2908
AUIRLR3105 ..BLD6G22LS-50
BLF1043 ..BS170F
BS170P ..BSP75G
BSP75N ..BUK6510-75C
BUK652R0-30C ..BUK9107-55ATE
BUK9120-48TC ..BUZ41A
BUZ42 ..CED12N10L
CED12P10 ..CEP01N65
CEP01N6G ..CEUF640
CEV2306 ..DMP2066LSD
DMP2066LSN ..FCPF22N60NT
FCPF22N60NT ..FDD13AN06A0_F085
FDD14AN06LA0_F085 ..FDMA1032CZ
FDMA1032CZ ..FDMS86103L
FDMS86103L ..FDPF5N50NZF
FDPF5N50NZU ..FDS8958A_F085
FDS8958A_F085 ..FQB19N20L
FQB19N20L ..FQP8N80C
FQP8N80C ..FRL9130H
FRL9130R ..GWM120-0075X1-SL
GWM120-0075X1-SL ..HAT1040T
HAT1041T ..HAT3038R
HAT3040R ..IPA030N10N3G
IPA032N06N3G ..IPB80N03S4L-02
IPB80N03S4L-03 ..IPI100N04S3-03
IPI100N04S4-H2 ..IPP60R160C6
IPP60R165CP ..IRF1010EZL
IRF1010EZS ..IRF5806
IRF5810 ..IRF7321D2
IRF7322D1 ..IRF840A
IRF840A ..IRFBF20S
IRFBF30 ..IRFL014
IRFL014N ..IRFPE40
IRFPE50 ..IRFS453
IRFS4610 ..IRFU2405
IRFU2407 ..IRL3502S
IRL3705N ..IRLR8113
IRLR8256 ..IXFE39N90
IXFE44N50Q ..IXFK21N100F
IXFK21N100Q ..IXFN48N50
IXFN48N50Q ..IXFT68N20
IXFT69N30P ..IXTA140N055T2
IXTA140P05T ..IXTH20N60
IXTH20N60MA ..IXTN600N04T2
IXTN60N50L2 ..IXTQ32P20T
IXTQ36N30P ..IXTZ24N50MA
IXTZ24N50MB ..KHB9D0N90P1
KHB9D5N20D ..KTJ6131E
KTJ6131V ..NCV8402D
NCV8403 ..NTD4805N
NTD4806N ..NTTFS4932N
NTTFS4937N ..PHX3N40E
PHX3N50E ..PSMN2R0-60ES
PSMN2R0-60PS ..RFD12N06RLESM
RFD14N05 ..RJK0455DPB
RJK0456DPB ..RQK0606KGDQA
RQK0607AQDQS ..SDF1NA60JAA
SDF1NA60JAB ..SFW9610
SFW9614 ..SMK0825FZ
SMK0850F ..SML6045BN
SML6045HN ..SPP08N50C3
SPP08N80C3 ..SSH20N45
SSH20N45A ..SSM5P05FU
SSM5P15FU ..SSS5N90A
SSS6N55 ..STD13NM60N
STD14NM50N ..STE50N40
STE53NA50 ..STK12N05L
STK12N06L ..STP20NM60
STP20NM60FD ..STP75N3LLH6
STP75NF20 ..STW12N60
STW12NA50 ..TK12X60U
TK130F06K3 ..TPC8010-H
TPC8012-H ..TPCC8006-H
TPCC8007 ..UT3P06
UT40N03 ..ZVN3310A
ZVN3310F ..ZXMS6006SG
 
IRF740 All MOSFET Data Sheet. Parameters and Characteristics. MOSFET Cross Reference Database.
 

IRF740 MOSFET transistor datasheet. Parameters and characteristics.

Type Designator: IRF740

Type of IRF740 transistor: MOSFET

Type of control channel: N -Channel

Maximum power dissipation (Pd), W: 125

Maximum drain-source voltage |Uds|, V: 400

Maximum gate-source voltage |Ugs|, V: 20

Maximum drain current |Id|, A: 10

Maximum junction temperature (Tj), °C: 150

Rise Time of IRF740 transistor (tr), nS:

Drain-source Capacitance (Cd), pF: 1450

Maximum drain-source on-state resistance (Rds), Ohm: 0.55

Package: TO220

Equivalent transistors for IRF740

IRF740 PDF doc:

1.1. irf740s.pdf Size:93K _st

IRF740
IRF740
IRF740S ? N - CHANNEL 400V - 0.48 ? - 10A- D2PAK PowerMESH? MOSFET TYPE VDSS RDS(on) ID IRF740S 400 V < 0.55 ? 10 A TYPICAL R = 0.48 ? DS(on) EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY LOW INTRINSIC CAPACITANCES GATE CHARGE MINIMIZED 3 FOR THROUGH-HOLE VERSION CONTACT 1 SALES OFFICE D2PAK DESCRIPTION TO-263 This power MOSFET is designed using the (Suffix ”T4”) company’s consolidated strip layout-based MESH OVERLAY? process. This technology matches and improves the performances compared with standard parts from various sources. APPLICATIONS INTERNAL SCHEMATIC DIAGRAM HIGH CURRENT SWITCHING UNINTERRUPTIBLE POWER SUPPLY (UPS) DC/DC COVERTERS FOR TELECOM, INDUSTRIAL, AND LIGHTING EQUIPMENT. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit V Drain-source Voltage (V = 0) 400 V DS GS VDGR 400 V Drain- gate Voltage (R = 20 k?) GS VGS Gate-source Voltage ± 20 V o I Drain Current (continuous) at T = 25 C10 A D c o I Drain Cu

1.2. irf740.pdf Size:93K _st

IRF740
IRF740
IRF740 ? N - CHANNEL 400V - 0.48 ? - 10 A - TO-220 PowerMESH? MOSFET TYPE VDSS RDS(on) ID IRF740 400 V < 0.55 ? 10 A TYPICAL R = 0.48 ? DS(on) EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY LOW INTRINSIC CAPACITANCES GATE CHARGE MINIMIZED DESCRIPTION This power MOSFET is designed using the 3 2 company’s consolidated strip layout-based MESH 1 OVERLAY process. This technology matches ? TO-220 and improves the performances compared with standard parts from various sources. APPLICATIONS HIGH CURRENT SWITCHING UNINTERRUPTIBLE POWER SUPPLY (UPS) INTERNAL SCHEMATIC DIAGRAM DC/DC COVERTERS FOR TELECOM, INDUSTRIAL, AND LIGHTING EQUIPMENT. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VDS Drain-source Voltage (VGS = 0) 400 V VDGR 400 V Drain- gate Voltage (RGS = 20 k ) ? VGS Gate-source Voltage ± 20 V o ID Drain Current (continuous) at Tc = 25 C10 A o ID Drain Current (continuous) at Tc = 100 C6.3 A IDM(•) Drain Current (pulsed)

1.3. irf740-1-2-3-fi.pdf Size:482K _st2

IRF740
IRF740
˙ţ

1.4. irf740.pdf Size:154K _fairchild_semi

IRF740
IRF740

1.5. irf740b.pdf Size:894K _fairchild_semi

IRF740
IRF740
November 2001 IRF740B/IRFS740B 400V N-Channel MOSFET General Description Features These N-Channel enhancement mode power field effect • 10A, 400V, RDS(on) = 0.54? @VGS = 10 V transistors are produced using Fairchild’s proprietary, • Low gate charge ( typical 41 nC) planar, DMOS technology. • Low Crss ( typical 35 pF) This advanced technology has been especially tailored to • Fast switching minimize on-state resistance, provide superior switching • 100% avalanche tested performance, and withstand high energy pulse in the • Improved dv/dt capability avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies and electronic lamp ballasts based on half bridge. D G TO-220 TO-220F G D S G D S IRF Series IRFS Series S Absolute Maximum Ratings TC = 25°C unless otherwise noted Symbol Parameter IRF740B IRFS740B Units VDSS Drain-Source Voltage 400 V ID Drain Current - Continuous (TC = 25°C) 10 10 * A - Continuous (T

1.6. irf740as.pdf Size:135K _international_rectifier

IRF740
IRF740
PD- 92005 SMPS MOSFET IRF740AS/L HEXFET® Power MOSFET Applications VDSS Rds(on) max ID Switch Mode Power Supply ( SMPS ) Uninterruptable Power Supply 400V 0.55? 10A High speed power switching Benefits Low Gate Charge Qg results in Simple Drive Requirement Improved Gate, Avalanche and dynamic dv/dt Ruggedness Fully Characterized Capacitance and D 2 TO-262 Pak Avalanche Voltage and Current Effective Coss specified ( See AN 1001) Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 10 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 6.3 A IDM Pulsed Drain Current 40 PD @TA = 25°C Power Dissipation 3.1 W PD @TC = 25°C Power Dissipation 125 Linear Derating Factor 1.0 W/°C VGS Gate-to-Source Voltage ± 30 V dv/dt Peak Diode Recovery dv/dt 5.9 V/ns TJ Operating Junction and -55 to + 150 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Typical SMPS Topologies:

1.7. irf7403.pdf Size:116K _international_rectifier

IRF740
IRF740
PD - 9.1245B PRELIMINARY IRF7403 HEXFET® Power MOSFET Generation V Technology A Ultra Low On-Resistance A 1 8 S D N-Channel Mosfet VDSS = 30V 2 7 S D Surface Mount 3 6 Available in Tape & Reel S D Dynamic dv/dt Rating 4 5 G D RDS(on) = 0.022? Fast Switching Top View Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in SO-8 an application with dramatically reduced board space. The pack

1.8. irf740spbf.pdf Size:951K _international_rectifier

IRF740
IRF740
PD - 95204 IRF740SPbF • Lead-Free 4/29/04 Document Number: 91055 www.vishay.com 1 IRF740SPbF Document Number: 91055 www.vishay.com 2 IRF740SPbF Document Number: 91055 www.vishay.com 3 IRF740SPbF Document Number: 91055 www.vishay.com 4 IRF740SPbF Document Number: 91055 www.vishay.com 5 IRF740SPbF Document Number: 91055 www.vishay.com 6 IRF740SPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information (Lead-Free) I I I I I I I I I I = I OR I I I I = I I = = I Document Number: 91055 www.vishay.com 7 IRF740SPbF D2Pak Tape & Reel Infomation Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 4.10 (.161) 1.50 (.059) 0.368 (.0145) 3.90 (.153) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 24.30 (.957) 15.42 (.609) 23.90 (.941) 15.22 (.601) TRL 1.75 (.069) 10.90 (.429) 1.25 (.049) 4.72 (.136) 10.70

1.9. irf740lc.pdf Size:174K _international_rectifier

IRF740
IRF740

1.10. irf7404.pdf Size:163K _international_rectifier

IRF740
IRF740
PD - 9.1246C IRF7404 HEXFET® Power MOSFET Generation V Technology A 1 8 S D Ultra Low On-Resistance VDSS = -20V 2 7 P-Channel Mosfet S D Surface Mount 3 6 S D Available in Tape & Reel 4 5 G D RDS(on) = 0.040? Dynamic dv/dt Rating Fast Switching Top View Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and SO-8 multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is

1.11. irf740lcpbf.pdf Size:1404K _international_rectifier

IRF740
IRF740
PD - 94880 IRF740LCPbF • Lead-Free 12/10/03 Document Number: 91052 www.vishay.com 1 IRF740LCPbF Document Number: 91052 www.vishay.com 2 IRF740LCPbF Document Number: 91052 www.vishay.com 3 IRF740LCPbF Document Number: 91052 www.vishay.com 4 IRF740LCPbF Document Number: 91052 www.vishay.com 5 IRF740LCPbF Document Number: 91052 www.vishay.com 6 IRF740LCPbF Document Number: 91052 www.vishay.com 7 IRF740LCPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) - B - 3.78 (.149) 10.29 (.405) 2.87 (.113) 4.69 (.185) 3.54 (.139) 2.62 (.103) 4.20 (.165) - A - 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) LEAD ASSIGNMENTS HEXFET GATE IGBTs, CoPACK MIN 1 - 1 2 3 2 - 1- GATE DRAIN 1- GATE 3 - SOURCE 2- DRAIN 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN 4- DRAIN 4- COLLECTOR 14.09 (.555) 4.06 (.160) 13.47 (.530) 3.55 (.140) 0.93 (.037) 0.55 (

1.12. irf740s.pdf Size:171K _international_rectifier

IRF740
IRF740

1.13. irf740.pdf Size:926K _international_rectifier

IRF740
IRF740
PD - 94872 IRF740PbF • Lead-Free 12/5/03 Document Number: 91053 www.vishay.com 1 IRF740PbF Document Number: 91053 www.vishay.com 2 IRF740PbF Document Number: 91053 www.vishay.com 3 IRF740PbF Document Number: 91053 www.vishay.com 4 IRF740PbF Document Number: 91053 www.vishay.com 5 IRF740PbF Document Number: 91053 www.vishay.com 6 IRF740PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) - B - 3.78 (.149) 10.29 (.405) 2.87 (.113) 4.69 (.185) 3.54 (.139) 2.62 (.103) 4.20 (.165) 1.32 (.052) - A - 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) LEAD ASSIGNMENTS HEXFET IGBTs, CoPACK MIN 1 - GATE 1 2 3 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- DRAIN 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN 4- DRAIN 4- COLLECTOR 14.09 (.555) 4.06 (.160) 13.47 (.530) 3.55 (.140) 0.93 (.037) 0.55 (.022) 3X 3X 0.69 (.027) 0.46 (.018) 1.40 (.055) 3X 1.15 (.045)

1.14. irf7406.pdf Size:114K _international_rectifier

IRF740
IRF740
PD - 9.1247C IRF7406 PRELIMINARY HEXFET® Power MOSFET Generation V Technology A 1 8 Ultra Low On-Resistance S D VDSS = -30V 2 7 P-Channel Mosfet S D Surface Mount 3 6 S D Available in Tape & Reel 4 5 G D RDS(on) = 0.045? Dynamic dv/dt Rating Fast Switching Top V iew Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized SO-8 leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. Th

1.15. irf7402.pdf Size:136K _international_rectifier

IRF740
IRF740
PD - 93851A IRF7402 HEXFET® Power MOSFET Generation V Technology A A Ultra Low On-Resistance 1 8 S D N-Channel MOSFET VDSS = 20V 2 7 S D Very Small SOIC Package 3 6 S D Low Profile (<1.1mm) 4 Available in Tape & Reel 5 G D RDS(on) = 0.035? Fast Switching Top View Description Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The SO-8 has been modified through a customized SO-8 leadframe for enhanced thermal characterstics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduce

1.16. irf7401.pdf Size:118K _international_rectifier

IRF740
IRF740
PD - 9.1244C IRF7401 HEXFET® Power MOSFET Generation V Technology A A 1 8 Ultra Low On-Resistance S D VDSS = 20V 2 7 N-Channel Mosfet S D Surface Mount 3 6 S D Available in Tape & Reel 4 5 G D RDS(on) = 0.022? Dynamic dv/dt Rating Fast Switching Top View Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized SO-8 leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is

1.17. irf740a.pdf Size:196K _international_rectifier

IRF740
IRF740
PD- 94828 SMPS MOSFET IRF740APbF HEXFET® Power MOSFET Applications VDSS Rds(on) max ID l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply 400V 0.55? 10A l High speed power switching l Lead-Free Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current G D S TO-220AB l Effective Coss specified ( See AN 1001) Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 10 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 6.3 A IDM Pulsed Drain Current 40 PD @TC = 25°C Power Dissipation 125 W Linear Derating Factor 1.0 W/°C VGS Gate-to-Source Voltage ± 30 V dv/dt Peak Diode Recovery dv/dt ? 5.9 V/ns TJ Operating Junction and -55 to + 150 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torqe, 6-32 or M3 screw 10 lbf•in

1.18. irf740as-l.pdf Size:304K _international_rectifier

IRF740
IRF740
PD- 95532 SMPS MOSFET IRF740AS/LPbF HEXFET® Power MOSFET Applications VDSS Rds(on) max ID l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply 400V 0.55? 10A l High speed power switching l Lead-Free Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and D 2 TO-262 Pak Avalanche Voltage and Current l Effective Coss specified ( See AN 1001) Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V† 10 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V† 6.3 A IDM Pulsed Drain Current † 40 PD @TA = 25°C Power Dissipation 3.1 W PD @TC = 25°C Power Dissipation 125 Linear Derating Factor 1.0 W/°C VGS Gate-to-Source Voltage ± 30 V dv/dt Peak Diode Recovery dv/dt ?† 5.9 V/ns TJ Operating Junction and -55 to + 150 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from cas

1.19. irf740a.pdf Size:937K _samsung

IRF740
IRF740
Advanced Power MOSFET FEATURES BVDSS = 400 V Avalanche Rugged Technology RDS(on) = 0.55 ? Rugged Gate Oxide Technology Lower Input Capacitance ID = 10 A Improved Gate Charge Extended Safe Operating Area Lower Leakage Current : 10 µA (Max.) @ VDS = 400V Lower RDS(ON) : 0.437 ? (Typ.) 1 2 3 1.Gate 2. Drain 3. Source Absolute Maximum Ratings Symbol Characteristic Value Units VDSS Drain-to-Source Voltage V 400 o Continuous Drain Current (TC=25 C) 10 ID A o C Continuous Drain Current (TC=100 ) 6.3 IDM Drain Current-Pulsed 1 40 A O VGS Gate-to-Source Voltage _ V EAS Single Pulsed Avalanche Energy 2 mJ 457 O IAR Avalanche Current 1 10 A O EAR Repetitive Avalanche Energy 1 mJ 13.4 O 3 dv/dt Peak Diode Recovery dv/dt V/ns 4.0 O Total Power Dissipation (TC=25 oC ) 134 W PD Linear Derating Factor W/ o 1.08 C Operating Junction and TJ , TSTG - 55 to +150 Storage Temperature Range o C Maximum Lead Temp. for Soldering TL 300 Purpo

1.20. irf740a_sihf740a.pdf Size:205K _vishay

IRF740
IRF740
IRF740A, SiHF740A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY • Low Gate Charge Qg Results in Simple Drive VDS (V) 400 Requirement Available RDS(on) (?)VGS = 10 V 0.55 • Improved Gate, Avalanche and Dynamic dV/dt RoHS* Qg (Max.) (nC) 36 COMPLIANT Ruggedness Qgs (nC) 9.9 • Fully Characterized Capacitance and Avalanche Voltage Qgd (nC) 16 and Current Configuration Single • Effective Coss Specified • Compliant to RoHS Directive 2002/95/EC D TO-220AB APPLICATIONS • Switch Mode Power Supply (SMPS) • Uninterruptable Power Supply G • High Speed Power Switching S TYPICAL SMPS TOPOLOGIES D G S • Single Transistor Flyback Xfmr. Reset N-Channel MOSFET • Single Transistor Forward Xfmr. Reset (Both for US Line Input Only) ORDERING INFORMATION Package TO-220AB IRF740APbF Lead (Pb)-free SiHF740A-E3 IRF740A SnPb SiHF740A ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage VDS 400 V

1.21. irf740lc_sihf740lc.pdf Size:197K _vishay

IRF740
IRF740
IRF740LC, SiHF740LC Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY • Ultra Low Gate Charge VDS (V) 400 • Reduced Gate Drive Requirement Available RDS(on) (?)VGS = 10 V 0.55 • Enhanced 30 V VGS Rating RoHS* COMPLIANT Qg (Max.) (nC) 39 • Reduced Ciss, Coss, Crss Qgs (nC) 10 • Extremely High Frequency Operation Qgd (nC) 19 • Repetitive Avalanche Rated • Compliant to RoHS Directive 2002/95/EC Configuration Single D DESCRIPTION This new series of low charge Power MOSFETs achieve TO-220AB significantly lower gate charge over conventional MOSFETs. Utilizing the new LCDMOS technology, the device improvements are achieved without added product cost, G allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high S frequency applications. Frequencies of a few MHz at high D G S current are possible using the new Low Charge MOSFETs. N-Channel MOSFET

1.22. irf740_sihf740.pdf Size:196K _vishay

IRF740
IRF740
IRF740, SiHF740 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY • Dynamic dV/dt Rating VDS (V) 400 Available • Repetitive Avalanche Rated RDS(on) (?)VGS = 10 V 0.55 RoHS* • Fast Switching Qg (Max.) (nC) 63 COMPLIANT • Ease of Paralleling Qgs (nC) 9.0 Qgd (nC) 32 • Simple Drive Requirements Configuration Single • Compliant to RoHS Directive 2002/95/EC D DESCRIPTION TO-220AB Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and G cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation S D levels to approximately 50 W. The low thermal resistance G S and low package cost of the TO-220AB contribute to its N-Channel MOSFET wide acceptance throughout the industry. ORDERING INFORMATION Package TO-220AB IRF740PbF Lead (Pb)-free SiHF740-E3 IRF740 SnPb SiHF740 ABSOLUTE M

1.23. irf740.pdf Size:246K _inchange_semiconductor

IRF740
IRF740
INCHANGE Semiconductor isc Product Specification isc N-Channel MOSFET Transistor IRF740 DESCRIPTION ·Drain Current –ID= 10A@ TC=25? ·Drain Source Voltage- : VDSS= 400V(Min) ·Static Drain-Source On-Resistance : RDS(on) = 0.55?(Max) ·Fast Switching Speed APPLICATIONS ·Designed especially for high voltage,high speed applications, such as off-line switching power supplies , UPS,AC and DC motor controls,relay and solenoid drivers. ABSOLUTE MAXIMUM RATINGS(Ta=25?) SYMBOL VALUE UNIT ARAMETER VDSS Drain-Source Voltage (VGS=0) 400 V VGS Gate-Source Voltage ±20 V ID Drain Current-continuous@ TC=25? 10 A Ptot Total Dissipation@TC=25? 125 W Tj Max. Operating Junction Temperature 150 ? Tstg Storage Temperature Range -65~150 ? THERMAL CHARACTERISTICS SYMBOL PARAMETER MAX UNIT ?/W Rth j-c Thermal Resistance,Junction to Case 1.0 isc Website:www.iscsemi.cn www.iscsemi.cn INCHANGE Semiconductor isc Product Specification isc N-Channel Mosfet

1.24. hirf740.pdf Size:48K _hsmc

IRF740
IRF740
Spec. No. : MOS200512 HI-SINCERITY Issued Date : 2005.09.01 Revised Date : 2005.09.22 MICROELECTRONICS CORP. Page No. : 1/4 HIRF740 Series Pin Assignment HIRF740 / HIRF740F Tab N-Channel Power MOSFET (400V, 10A) 3-Lead Plastic TO-220AB Package Code: E Pin 1: Gate Pin 2 & Tab: Drain Description Pin 3: Source This N-Channel MOSFETs provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost- 3 effectiveness. 2 1 Features 3-Lead Plastic TO-220FP Package Code: F • Dynamic dv/dt Rating Pin 1: Gate • Repetitive Avalanche Rated Pin 2: Drain • Fast Switching Pin 3: Source • Ease of Paralleling • Simple Drive Requirements 3 2 1 Thermal Characteristics HIRF740 Series Symbol Symbol Parameter Value Units D TO-220AB 1.71 Thermal Resistance R?JC Junction to Case Max. °C/W TO-220FP 3.3 G Thermal Resistance S R?JA Junction to Ambient Max. 62 °C/W Absolute Maximum Ratings Symbol Paramet

See also transistors datasheet: IRF732 , IRF7321D2 , IRF7322D1 , IRF7324D1 , IRF733 , IRF734 , IRF7353D1 , IRF737LC , IRF1404 , IRF7401 , IRF7403 , IRF7404 , IRF7406 , IRF740A , IRF740AL , IRF740AS , IRF740FI .

Keywords

 IRF740 Datasheet  IRF740 Datenblatt  IRF740 RoHS  IRF740 Distributor
 IRF740 Application Notes  IRF740 Component  IRF740 Circuit  IRF740 Schematic
 IRF740 Equivalent  IRF740 Cross Reference  IRF740 Data Sheet  IRF740 Fiche Technique

(C) 2005 All Right reserved Bipolar || MOSFET || IGBT | | Manufacturer Sites || SMD Code || Packages