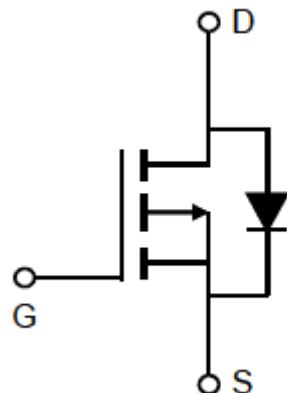


DESCRIPTION

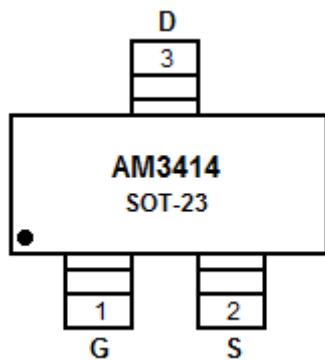
The AM3413 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

AM3413 is available in a SOT-23 package.


FEATURES

- $V_{DS} = -20V$
- $I_D = -3A$ ($V_{GS} = -4.5V$)
- $R_{DS(ON)} < 80m\Omega$ ($V_{GS} = -4.5V$)
- $R_{DS(ON)} < 100m\Omega$ ($V_{GS} = -2.5V$)
- $R_{DS(ON)} < 130m\Omega$ ($V_{GS} = -1.8V$)
- Available in a SOT-23 package.

ORDERING INFORMATION


PIN DESCRIPTION

Package Type	Part Number	
SOT-23	E3	AM3413E3R AM3413E3VR
Note	V: Halogen free Package R: Tape & Reel	
AiT provides all RoHS products		
Suffix " V " means Halogen free Package		

PIN DESCRIPTION

Top View

Pin #	Symbol	Function
1	G	Gate
2	S	Source
3	D	Drain

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^\circ\text{C}$, unless otherwise noted

V_{DS} , Drain-Source Voltage	-20V	
V_{GS} , Gate-Source Voltage	$\pm 8\text{V}$	
I_D , Continuous Drain Current ^{NOTE1}	$T_A=25^\circ\text{C}$	-3A
	$T_A=70^\circ\text{C}$	-2.4A
I_{DM} , Pulsed Drain Current ^{NOTE2}	-15A	
P_D , Power Dissipation ^{NOTE1}	$T_A=25^\circ\text{C}$	1.4W
	$T_A=70^\circ\text{C}$	0.9W
T_J , T_{STG} , Junction and Storage Temperature Range	$-55^\circ\text{C} \sim 150^\circ\text{C}$	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The value of $R_{\theta JA}$ is measured with the device mounted on 1 in ² FR-4 board with 2oz. copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10\text{s}$ thermal resistance rating.

NOTE2: Repetitive rating, pulse width limited by junction temperature.

THERMAL CHARACTERISTICS

Parameter		Symbol	Typ.	Max	Units
Maximum Junction-to-Ambient ^{NOTE1}	$t \leq 10\text{s}$	$R_{\theta JA}$	70	90	$^\circ\text{C/W}$
	Steady-State		100	125	
Maximum Junction-to-Lead ^{NOTE3}	Steady-State	$R_{\theta JL}$	63	80	$^\circ\text{C/W}$

NOTE3: The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ\text{C}$, unless otherwise noted

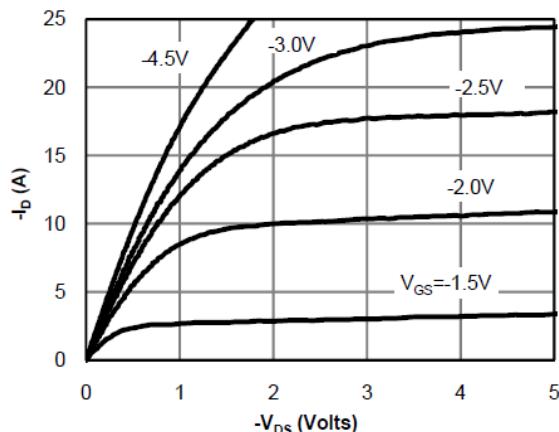
Parameter	Symbol	Conditions	Min	Typ.	Max	Units
Drain-Source Breakdown Voltage	BV_{DSS}	$\text{I}_{\text{DS}} = -250\mu\text{A}, \text{V}_{\text{GS}} = 0\text{V}$	-20	-	-	V
Zero Gate Voltage Drain Current	I_{DSS}	$\text{V}_{\text{DS}} = -20\text{V}, \text{V}_{\text{GS}} = 0\text{V}$	-	-	-1	μA
		$\text{T}_J = 55^\circ\text{C}$	-	-	-5	
Gate-Body leakage current	I_{GSS}	$\text{V}_{\text{DS}} = 0\text{V}, \text{V}_{\text{GS}} = \pm 8\text{V}$	-	-	± 100	nA
Gate Threshold Voltage	$\text{V}_{\text{GS}(\text{th})}$	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}, \text{I}_{\text{DS}} = -250\mu\text{A}$	-0.4	-0.65	-1	V
On state drain current	$\text{I}_{\text{D}(\text{ON})}$	$\text{V}_{\text{GS}} = -4.5\text{V}, \text{V}_{\text{DS}} = -5\text{A}$	-15	-	-	A
Static Drain-Source On-Resistance	$\text{R}_{\text{DS}(\text{ON})}$	$\text{V}_{\text{GS}} = -4.5\text{V}, \text{I}_{\text{D}} = -3\text{A}$	-	56	80	$\text{m}\Omega$
		$\text{T}_J = 125^\circ\text{C}$	-	80	115	
		$\text{V}_{\text{GS}} = -2.5\text{V}, \text{I}_{\text{D}} = -2.6\text{A}$	-	70	100	
		$\text{V}_{\text{GS}} = -1.8\text{V}, \text{I}_{\text{D}} = -1\text{A}$	-	85	130	
Forward Transconductance	g_{FS}	$\text{V}_{\text{DS}} = -5\text{V}, \text{I}_{\text{D}} = -3\text{A}$	-	12	-	S
Diode Forward Voltage	V_{SD}	$\text{I}_{\text{S}} = -1\text{A}, \text{V}_{\text{GS}} = 0\text{V}$	-	-0.7	-1	V
Maximum Body-Diode Continuous Current	I_{S}		-	-	-1.4	A

DYNAMIC PARAMETERS

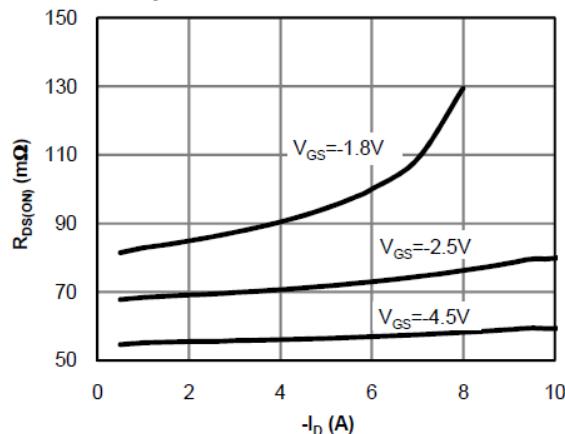
Input Capacitance	C_{iss}	$\text{V}_{\text{GS}} = 0\text{V}, \text{V}_{\text{DS}} = -10\text{V}, \text{f} = 1\text{MHz}$	-	560	745	pF
Output Capacitance	C_{oss}		-	80	-	
Reverse Transfer Capacitance	C_{rss}		-	70	-	
Gate Resistance	R_{G}	$\text{V}_{\text{GS}} = 0\text{V}, \text{V}_{\text{DS}} = 0\text{V}, \text{f} = 1\text{MHz}$	-	15	23	Ω

SWITCHING PARAMETERS

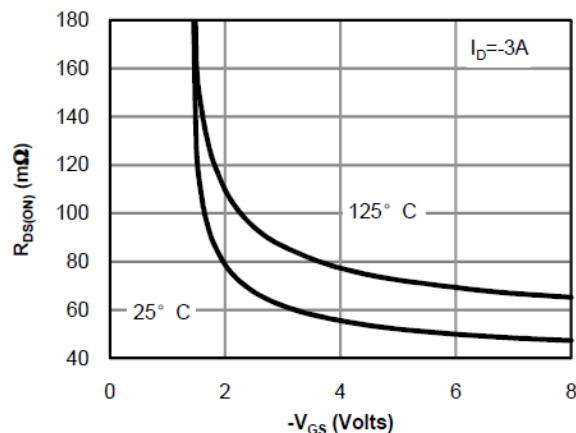
Total Gate Charge	Q_{G}	$\text{V}_{\text{GS}} = -4.5\text{V}, \text{V}_{\text{DS}} = -10\text{V}, \text{I}_{\text{D}} = -3\text{A}$	-	8.5	11	nC
Gate Source Charge	Q_{GS}		-	1.2	-	
Gate Drain Charge	Q_{GD}		-	2.1	-	
Turn-On Delay Time	$\text{t}_{\text{D}(\text{ON})}$	$\text{V}_{\text{GS}} = -4.5\text{V}, \text{V}_{\text{DS}} = -10\text{V}, \text{R}_{\text{L}} = 3.3\Omega, \text{R}_{\text{GEN}} = 6\Omega$	-	7.2	-	ns
Turn-On Rise Time	t_{R}		-	36	-	
Turn-Off Delay Time	$\text{t}_{\text{D}(\text{OFF})}$		-	53	-	
Turn-Off Fall Time	t_{F}		-	56	-	
Body Diode Reverse Recovery Time	t_{rr}	$\text{I}_{\text{F}} = -3\text{A}, \text{dI}/\text{dt} = 100\text{A}/\mu\text{s}$	-	37	49	ns
Body Diode Reverse Recovery Charge	Q_{rr}	$\text{I}_{\text{F}} = -3\text{A}, \text{dI}/\text{dt} = 100\text{A}/\mu\text{s}$	-	27	-	nC

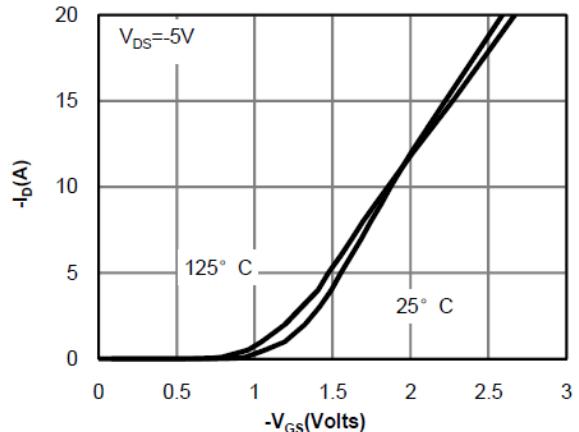

NOTE4: Pulse test; pulse width $\leq 300\mu\text{s}$, duty cycle $\leq 2\%$.

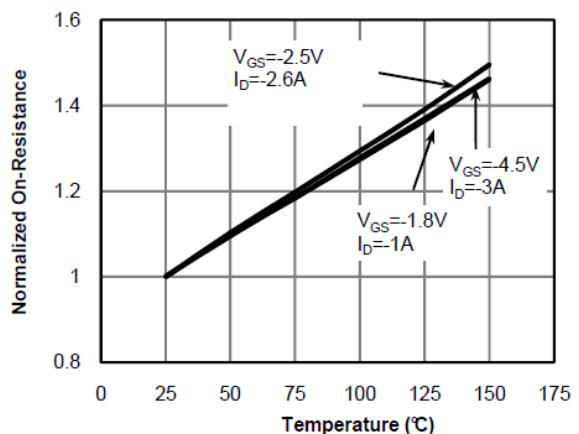
NOTE5: Guaranteed by design, not subject to production testing.

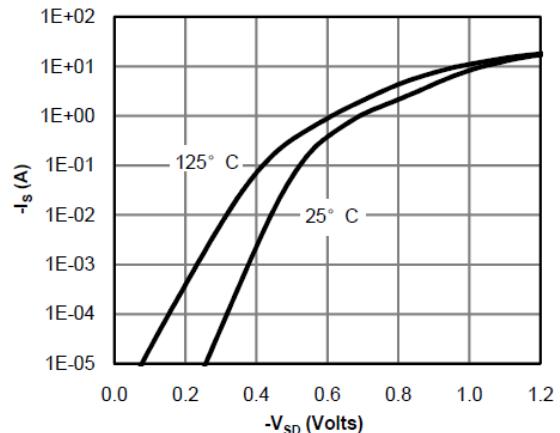


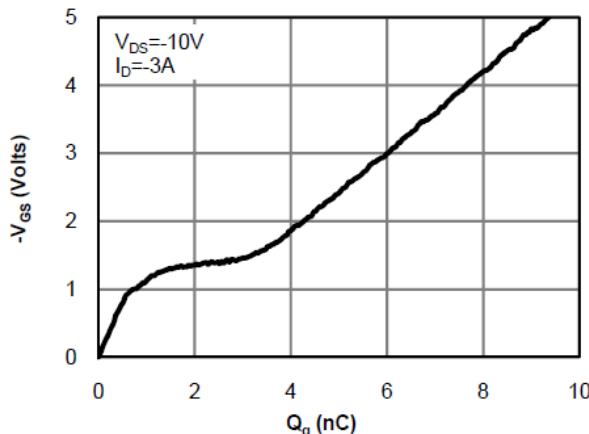
TYPICAL CHARACTERISTICS

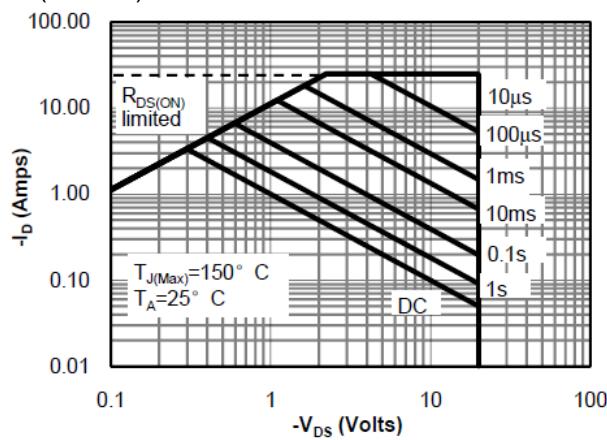

1. On-Region Characteristics

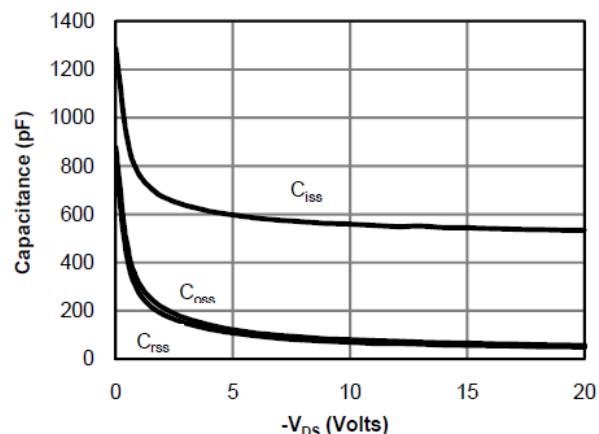

3. On-Resistance vs. Drain Current and Gate Voltage

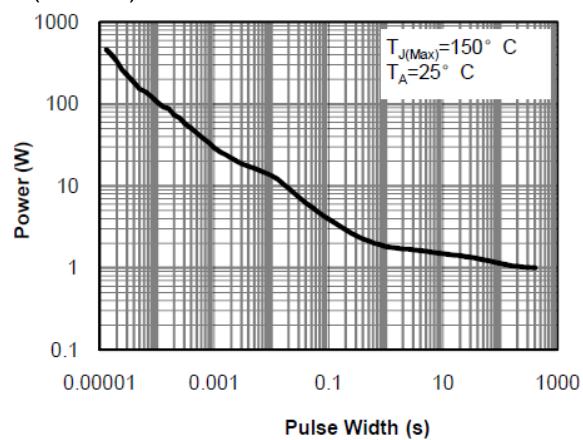

5. On-Resistance vs. Gate-Source Voltage

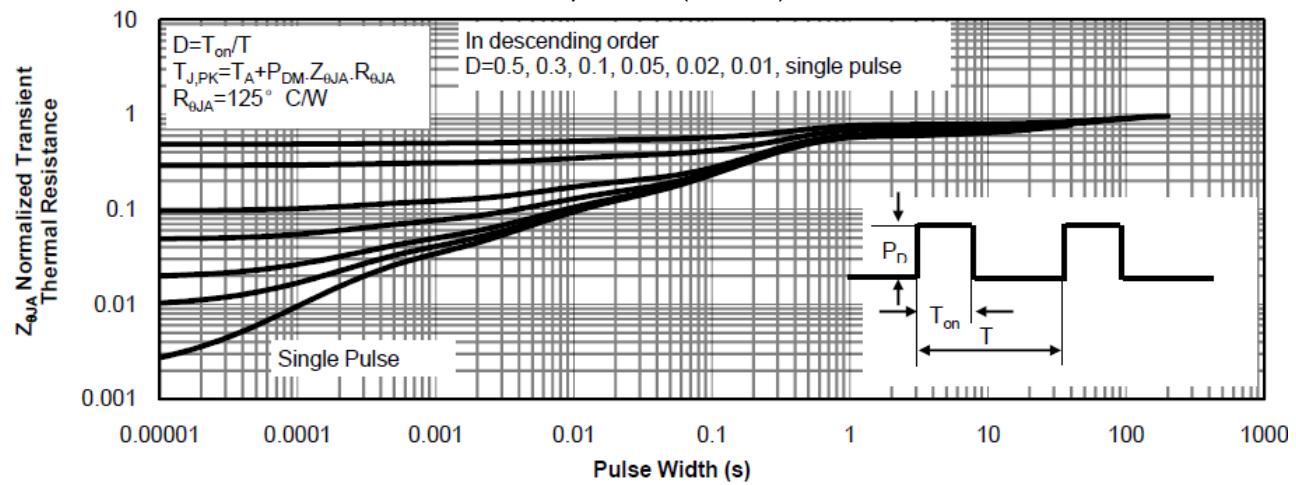

2. Transfer Characteristics


4. On-Resistance vs. Junction Temperature

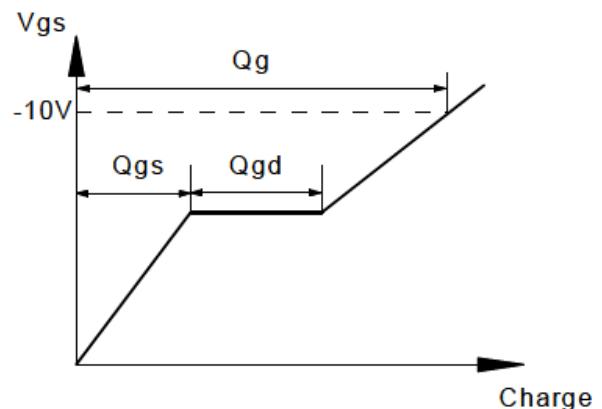
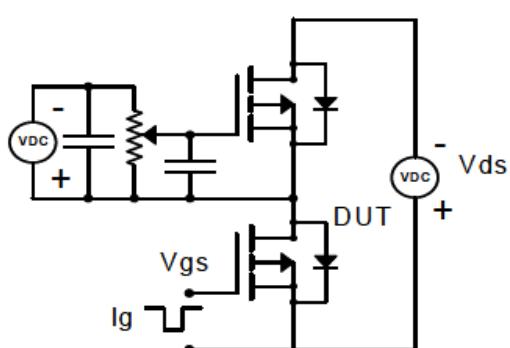

6. Body-Diode Characteristics

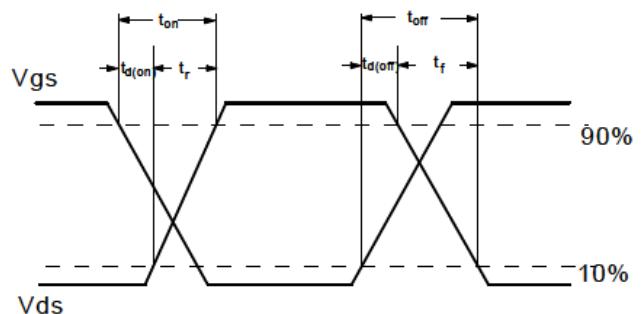
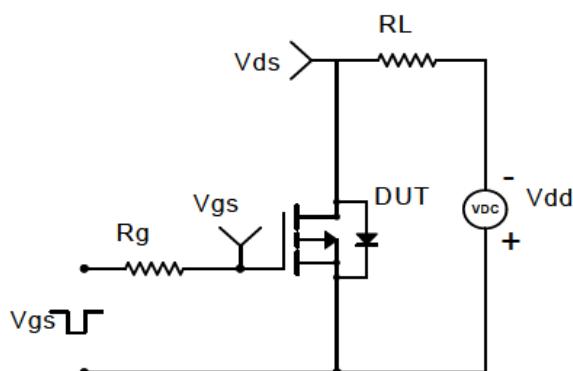

7. Gate-Charge Characteristics


9. Maximum Forward Biased Safe Operating Area (NOTE5)

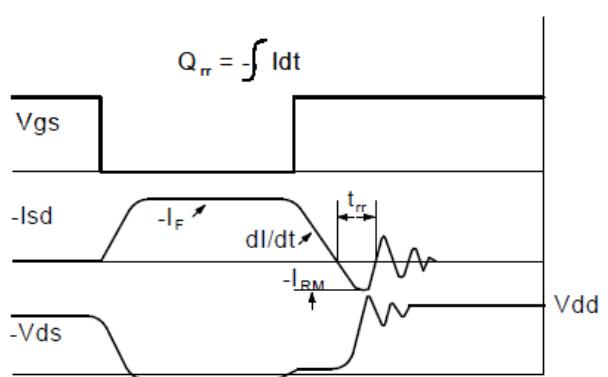
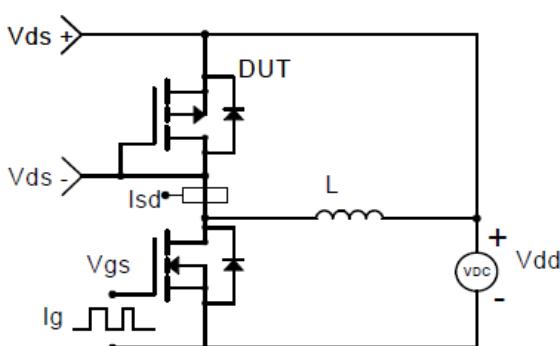

8. Capacitance Characteristics

10. Single Pulse Power Rating Junction-to-Ambient (NOTE5)

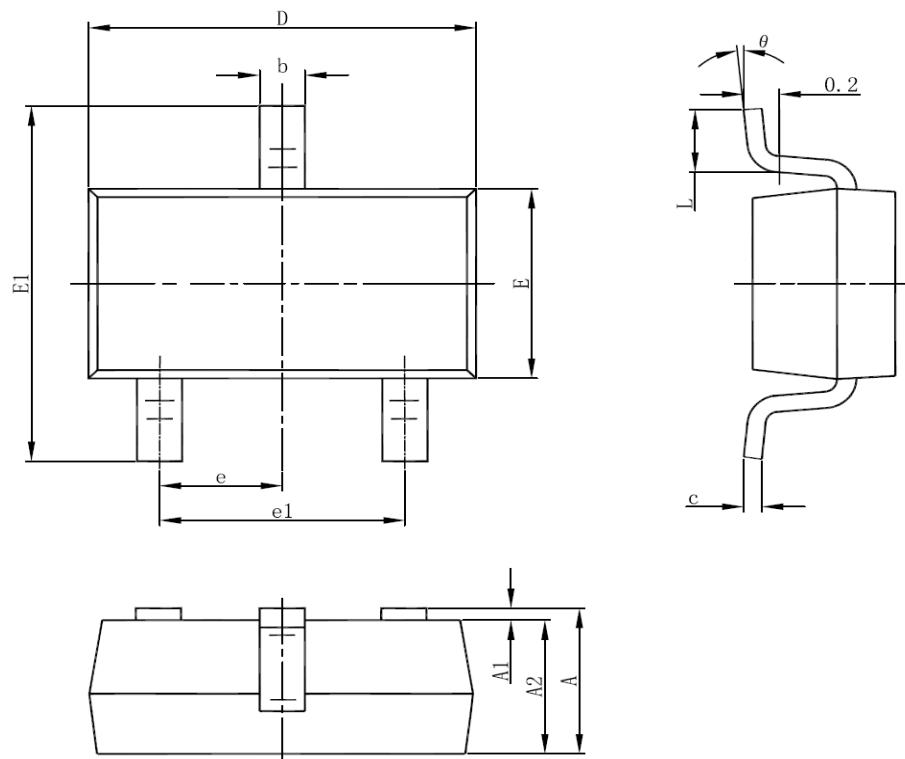


11. Normalized Maximum Transient Thermal Impedance (NOTE5)

DETAILED INFORMATION



Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

SYMBOL	MIN	MAX
A	-	1.200
A1	0.000	0.080
A2	1.090	1.120
b	0.300	0.500
c	0.080	0.220
D	2.700	3.100
E	1.400	1.800
E1	2.600	3.000
e	0.950(BSC)	
e1	1.900(BSC)	
L	0.300	0.600
θ	0°	8°

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or severe property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.