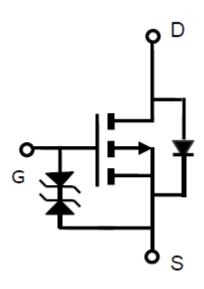


DESCRIPTION

The AM3415 is the P-Channel logic enhancement mode power field effect transistor is produced using high cell density. Advanced trench technology to provide excellent R_{DS} (ON) low gate charge and operation with gate voltage as 1.5V.

This device is suitable for use as a load switch or in applications.

The AM3415 is available in SOT-23 Package


FEATURES

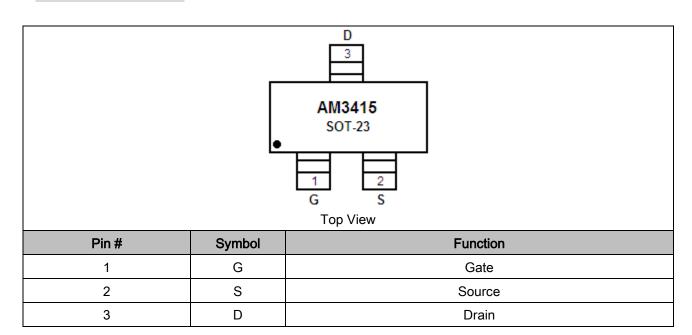
- -20V/-4.0A, $R_{DS(ON)} = 45m\Omega(typ.)@V_{GS} = -4.5V$
- -20V/-4.0A, $R_{DS(ON)} = 54m\Omega(typ.)@V_{GS} = -2.5V$
- -20V/-2.0A, $R_{DS(ON)} = 68m\Omega(typ.)@V_{GS} = -1.8V$
- -20V/-1.0A, $R_{DS(ON)} = 92m\Omega(typ.)@V_{GS} = -1.5V$
- Super high density cell design for extremely low R_{DS(ON)}
- Exceptional on-resistance and Maximum DC current capability
- ESD Protected : 3KV
- RoHs Compliant
- Available in SOT-23 package

APPLICATIONS

- Cellular/Portable
- Load Switch

P-CHANNEL MOSFET

ORDERING INFORMATION


Package Type	Part Number		
SOT-23	E3	AM3415E3R	
301-23	ES	AM3415E3VR	
Note	V: Green Package		
Note	R : Tape & Reel		
AiT provides all Pb free products			

Suffix " V " means Green Package

REV1.0 -NOV 2011 RELEASED - -1 -

PIN DESCRIPTION

REV1.0 -NOV 2011 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C Unless otherwise noted

VDSS	s, Drain-Source Voltage			-20 V
VGS	s, Gate-Source Voltage			±8 V
1_	Continuous Drain Current	T _A =25°C ^{Note1}	- V _{GS} =-8V	-4.0 A
ID	Continuous Drain Current	T _A =70°C ^{Note1}	V GS0 V	-3.5 A
I _{DM} ,	Pulsed Drain CurrentNote2			-20 A
P _D , Power Dissipation			T _A =25°C	1.5 W
		T _A =70°C		0.9 W
T _J , (Operation Junction Temperature			-55 °C to 150°C
Tsto	s, Storage Temperature Range			55 °C to 150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C.

NOTE2: The data tested by pulsed , pulse width \leq 300uS , duty cycle \leq 2%

THERMAL INFORMATION

Symbol	Parameter	Тур.	Max	Unit
$R_{ heta JA}$	Thermal Resistance-Junction to Ambient Steady-State	-	140	°C/W
RøJL	Thermal Resistance Junction to Lead Steady-State	-	80	°C/W

REV1.0 -NOV 2011 RELEASED - -3

ELECTRICAL CHARACTERISTICS

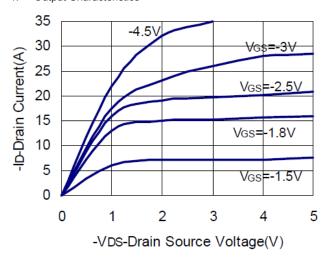
T_J = 25°C Unless otherwise specified

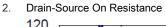
Parameter	Symbol	Conditions	Min	Туре	Max	Units	
Static Parameters	-						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V,I _D =-250μA	-20	-	-	V	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-0.3	-	-1.0	V	
Gate Leakage Current	I _{GSS}	V _{DS} =0V,V _{GS} =±8V	-	-	±10	μΑ	
Zero Gate Voltage, Drain-Source Leakage Current	I _{DSS}	V _{DS} =-20V,V _{GS} =0V T _J =25°C	-		-1	μΑ	
		V _{DS} =-20V,V _{GS} =0V T _J =55°C		_	-5		
		V_{GS} =-4.5 V , I_{D} =-4.0 A		44	54	mΩ	
Drain source On PosistanceNote?	Daggan	V_{GS} =-2.5 V , I_{D} =-4.0 A		53	62		
Drain-source On-Resistance ^{Note2}	R _{DS(ON)}	V _{GS} =-1.8V,I _D =-2.0A		66	75		
		V _{GS} =-1.5V,I _D =-1.0A		85	110		
Forward Transconductance	G_fs	V _{DS} =-5V,I _D =-4.0A		22		S	
Source-Drain Diode							
Diode Forward Voltage	V_{SD}	I _S =-1.0A,V _{GS} =0V		-0.67	-1.0	V	
Continuous Source CurrentNote1 Note3	Is				-6	А	
Dynamic Parameters							
Total Gate Charge	Q _g (-4.5V)	V _{DS} =-10V		11.1			
Gate-Source Charge	Qgs	V _{GS} =-4.5V		3.1		nC	
Gate-Drain Charge	Q_gd	I _D ≡-4.0A		2.4			
Input Capacitance	C_iss	V _{DS} =-10V		989			
Output Capacitance	Coss	V _{GS} =0V		167		рF	
Reverse Transfer Capacitance	C_{rss}	f=1MHz		75.5			
Turn-On Time	t _{d(on)}	V _{DD} =-10V		712		nS	
	tr	I _D =-1A		1386			
Turn-Off Time	t _{d(off)}	V _{GEN} =-4.5V		9.1			
rum-On Time	t _f	R _G =2.5Ω		4		μA	

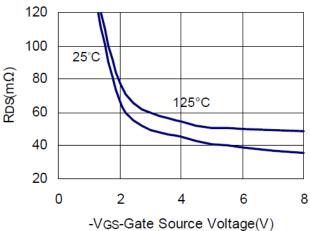
NOTE1: The value of R_{8JA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}C$

NOTE2: The data tested by pulsed , pulse width \leq 300uS , duty cycle \leq 2%

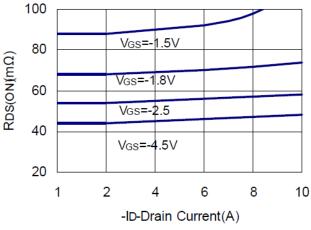
NOTE3: The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

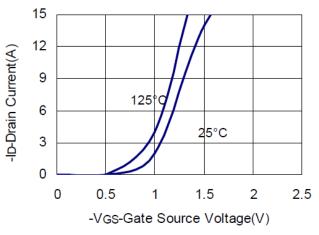

REV1.0 -NOV 2011 RELEASED - -4 -

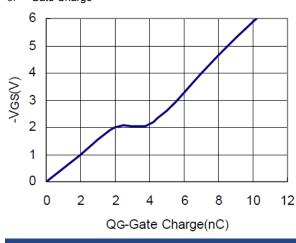


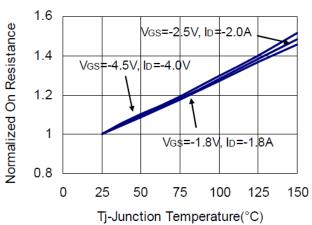

TYPICAL PERFORMANCE CHARACTERISTICS

T_A=25°C Unless Specified

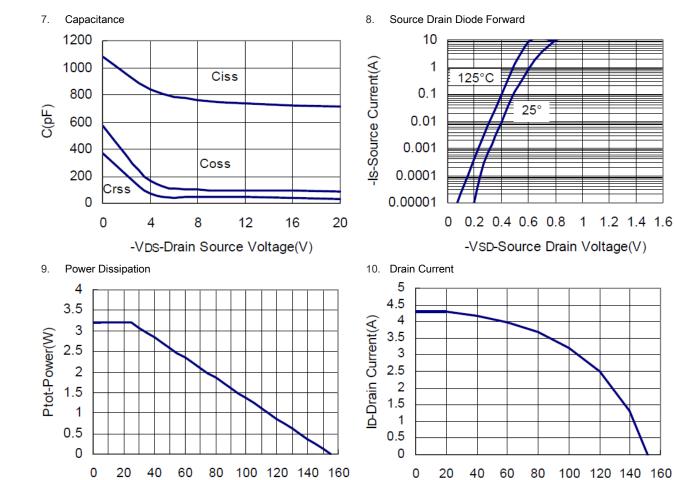

1. Output Characteristics



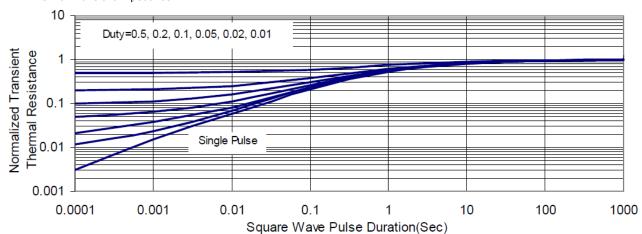



Transfer Characteristics

Gate Charge



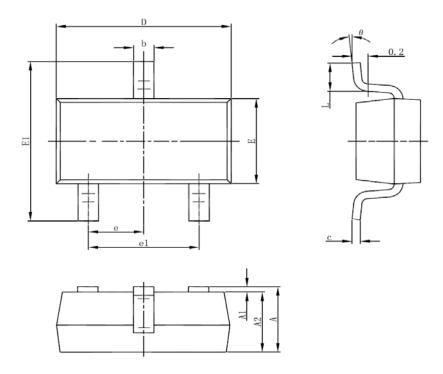
Drain Source Resistance


REV1.0 -NOV 2011 RELEASED -- 5 -

TJ-Junction Temperature(°C)

11. Thermal Transient Impedance

TJ-Junction Temperature(°C)



REV1.0 -NOV 2011 RELEASED - -6 -

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

SYMBOL	MIN	MAX		
А	1.050	1.250		
A1	0.000	0.100		
A2	1.050	1.150		
b	0.300	0.500		
С	0.100	0.200		
D	2.820	3.020		
E	1.500	1.700		
E1	2.650	2.950		
е	0.950(BSC)			
e1	1.800	2.000		
L	0.300	0.600		
θ	0°	8°		

REV1.0 -NOV 2011 RELEASED - -7

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 -NOV 2011 RELEASED - - 8 -