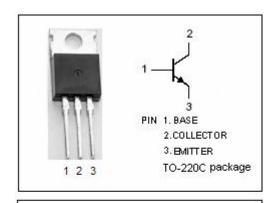
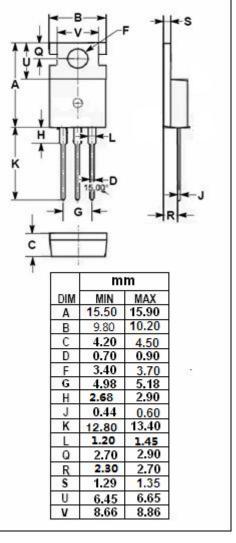


isc Silicon NPN Power Transistor

2SC2517

DESCRIPTION


- · Low Collector Saturation Voltage
- · Fast Switching Speed
- Minimum Lot-to-Lot variations for robust device performance and reliable operation


APPLICATIONS

 Designed for high-speed switching, and is ideal for use as a driver in devices such as switching reglators,DC/DC converters, and high frequency power amplifiers.

ABSOLUTE MAXIMUM RATINGS(Ta=25℃)

SYMBOL	PARAMETER	VALUE	UNIT
V _{CBO}	Collector-Base Voltage	150	V
V _{CEO}	Collector-Emitter Voltage	100	V
V_{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current-Continuous	5	Α
Ісм	Collector Current-Peak	10	Α
I _B	Base Current-Continuous	2.5	Α
Pc	Total Power Dissipation @ T _C =25°C	30	W
TJ	Junction Temperature	150	$^{\circ}$
T _{stg}	Storage Temperature Range	-55~150	$^{\circ}$

isc Silicon NPN Power Transistor

2SC2517

0.5

 $\mu\, \textbf{S}$

ELECTRICAL CHARACTERISTICS

 T_{C} =25°C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT		
V _{CEO(SUS)}	Collector-Emitter Sustaining Voltage	I _C = 50mA; I _B = 0	100		V		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 3.0A; I _B = 0.3A		0.6	V		
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 3.0A; I _B = 0.3A		1.5	V		
I _{CBO}	Collector Cutoff Current	V _{CB} = 100V; I _E = 0		10	μА		
I _{CER}	Collector Cutoff Current	V_{CE} = 100V; R_{BE} = 51 Ω , T_a =125 $^{\circ}$ C		1.0	mA		
I _{CEX}	Collector Cutoff Current	V _{CE} = 100V; V _{BE(off)} = -1.5V V _{CE} = 100V; V _{BE(off)} = -1.5V, T _a =125°C		10 1.0	μA mA		
I _{EBO}	Emitter Cutoff Current	V _{EB} = 10V; I _C =0		10	μА		
h _{FE-1}	DC Current Gain	I _C = 0.2A; V _{CE} = 5V	40				
h _{FE-2}	DC Current Gain	I _C = 2A; V _{CE} = 5V	40	200			
Switching times							
t _{on}	Turn-on Time			0.5	μ S		
tstg	Storage Time	I _C = 3.0A ,R _L = 17 Ω , I _{B1} = -I _{B2} = 0.3A,V _{CC} ≈ 50V		2.5	μS		

h_{FE-2} Classifications

M	L	K
40-80	60-120	100-200

Fall Time

isc Silicon NPN Power Transistor

2SC2517

NOTICE:

ISC reserves the rights to make changes of the content herein the datasheet at any time without notification. The information contained herein is presented only as a guide for the applications of our products.

ISC products are intended for usage in general electronic equipment. The products are not designed for use in equipment which require specialized quality and/or reliability, or in equipment which could have applications in hazardous environments, aerospace industry, or medical field. Please contact us if you intend our products to be used in these special applications. ISC makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does ISC assume any liability arising from the application or use of any products, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

